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be claimed for the form in (31), and that the purpose of

this section is to indicate the special nature of the difficul-

ties associated with the near-degenerate cases, and why

the attempted expansion runs into trouble.

X. CONCLUSIONS

With the publication of this paper (and also a forthcom-

ing paper dealing with propagation of the TM modes [3])

we can say that the problem of propagation in a twisted

rectangular guide is complete and well understood with

the exception that there is still work that needs to be done

to obtain a valid and useful expansion in the neighbor-

hood of, but not exactly at, a degeneracy.
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Dispersion Relations for Comb-Type
Slow-Wave Structures

I. L. VERBITSKII

Abstract-Aaymptoticalfy accurate dispersion relations for slow eigen-

waves of a dense comb placed on the wall of a parallel-plate waveguide are

given in eked form, The equations eao be easify resolved mssnerically.

ASSanefysis of dispersion refmtions for combs, baaed on tbe abovemen-

tioned eqoatio~ baa advantages over comsnonfy used methods beeauae of

the simpfieity of tie naeeaary calculations and clarity of resutts.

I. INTRODUCTION

D ISPERSION relations for the widely used comb-

type slow-wave structures usually are obtained

through rather complicated computations [1], [2], [3]. In

this communication asymptotically accurate dispersion re-

lations for slow eigenwaves of a dense comb placed on the

wall of a parallel-plate waveguide are given in closed

form. The equations can be easily resolved numerically. If

the ratio of the light velocity c to that of the slow wave v

is not too small (e.g., c/u > 2.5), explicit formulas for the

wavelength as a function of the phase shift can be ob-

tained.

An analysis of dispersion relations for combs, based on

the above-mentioned equations, has advantages over com-

monly used methods because of the simplicity of the
necessary calculations and the clarity of results.
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II. BASIC RELATIONS

Consider a comb placed on the wall of a parallel-plate

waveguide (Fig. 1), where d is the period, h the groove

depth, cl the groove width, and A the spacing between tops

of the lamellas and the upper waveguide wall. We will also

use the following notation: A for the free-space wave-

length, u the circular frequency, k= 27r/A = u/c the wave-

number, ~ = d/A = kd/2~, 9 = d~d, v = KO tan kh,

-r theB the phase constant of the slow wave, a – /3 – k

transverse wavenumber of the slow wave, b= 8d/2n

(where /3d is the phase shift over one period), and a=

ad/2~.

For the case of A = co, open comb, the dispersion

equation for the TM slow wave (with nonzero compo-

nents EX, EY, and Hz) was obtained in [4, eq. (16)] with an

assumption that terms of the order exp( – 2~h/ 8 ) and K2

could be neglected (indeed, these values are generally very

small in real slow-wave structures). Through some labori-

ous and sophisticated calculations the author has

succeeded in obtaining an explicit expression for the in-
tegral [4, eq. l(b)] from (the derivation has been omitted

here). With the aid of this formula and an additional

assumption, i.e., exp( – 2TA / d)<< 1 (which holds in most

cases), we can now obtain a closed form of the dispersion

equation for slow waves in a comb placed in a waveguide.
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Fig. 1.

This relation is
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At bcza (i.e., c/o is large) equation (4) can be reduced to

a still simpler form; viz.,

1
; – rp(b) –j(o),—.— (4a)

v

The general equation (1) with bsa takes the form

1
– = ;cothb[~+p(f7)] –q(b)–j(O) (la)
v

where ~= 27rA /d. It can be seen from (la) that ~(~)

accounts for penetration of the quasi-static field into the

grooves, which effect is the same as though the boundary

y= O were displaced to the position y = – (d/2 T)p(0). A

similar effect was described in papers [7] and [8] for a

purely static case.

With the same accuracy as used in deriving (la) and

(4a) we can write their approximate closed-form solutions,

1 [f-a+ (a+ b)exp(-2aA)]’3
; – Cf(b)-j(q – :—.—

b [b–a–(a+b)exp(–2 aA)]!?–a–b-(b-a)exp( -2aA)
(1)

v

where namely

9=[(1-/3)1-’(l +O+e]e2bdetexp(p2 bp(13)),),
(n+ O.5)77

j(0)= 21n(4f3)+ ~ln(l–4)–~ln(l+ O),
‘= ~+8{ +cothb[~+p(/?)] -p(b) -f(O)) ‘

n=o, l,2,. .” (lb)
q(b)= $(l+b)+$(l–b)+2C,

*(z) =rf(z)/r(z)
and

(n+ O.5)7T
“= . . ., n=0,1,2 . . . . (4b)

is the digamma function and C= 0.5772” “” is Euler’s
1 1

k+O ;–~(b)–f(0) ‘ ‘
constant. Equation (1) has been derived by taking into

account the reflection from the upper wall of the wave-

guide only for the fundamental harmonic of the surface

field. Reflections of higher harmonics are negligible be-

cause of the imposed condition exp( – 27A /d)<< 1 (see [5,

ch. 51, p. 266].

Equation (1) can be easily resolved numerically. De-

tailed tables [6] and effective methods of calculation are

known for the one special function involved ~(z). Using

the familiar expansions of ~(z) one can obtain the follow-

ing approximate expression for q(b):

4
rp(b)&3– ~ – — – 0.158b2.

2–b2 4–b2
(2)

The accuracy is of the order 10-4 with Ibl <0.5.

III. PARTICULAR CASES

For particular cases (1) can be simplified. Thus, for

surface waves in an open comb (A= m, exp( – 2aA ) = O)

equation (1) reduces to

11 2(b – a)g
~ – lp(b)f(d) +—.—

b[(a–b)~+a+b]
(3)

v

with a>> K2 (i.e., the ratio c/v is not too small) the follow-

ing equation can be deduced from (3):

11
—. – – cp(b) –f(O).
va

(4)

where ~= 2z-h / d. Different values of n here correspond to

different passbands of the structure and (lb) and (4b) are

valid only for those n’s which provide for sufficiently large

values of the ratio c/v (i.e., as b, K2<< b’). Taking n = O

we obtain the necessary conditions of low-phase velocities

as

{ }

2

d

4bh+ ~[cothb(~+p)- b~(b)-bf(d)] ‘<1

for the comb in the waveguide and (2~h/m)2< 1 for the

open comb.

Substituting b = 1/2 in (4b) we find cutoff wavelengths

~= 2h+dg(0)/n

n+o.5 o

With n= O the cutoff depth of the fundamental band

becomes

h=; –;g(0)

where

g(0) =201n0– (l– O)ln(l– O)+(l+O)ln(l+ O).

For vanishingly thin lamellas the earlier known results

follow immediately: N tan kh = 1/2 in 2 [9], h = A/4 –

(d/r)ln2 [10].
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IV. WAVES IN THE STOPBAND

Representing (4a) in the form

1
;=-[+(b)++(l-h) +f(e)]

we can identify real solutions v with b = i/2+ it, such that

g(0) > 1/v> – m at 0< t> m. These solutions corre-

spond to surface waves in the stopband, traveling along

the structure with a frequency-independent phase shift

fld= ~ and attenuation t.The corresponding wavelength

varies between

~_ 2h+dg(8)/~
att=O

n+o.5 ‘

and

A=$, att=ca.

For 8= I such waves were described in [9].

In the vicinity of the point ~= K, a = O (where the

surface wave transforms to the bulk wave) the following

relations can be obtained from (l):

n7r
Km

Z–p(e)/o

or

V. EVALUATION OF ACCUMCY

To evaluate numerical accuracy of the above results, a

comparison has been made with some known numerical

analyses [ 1]–[3]. The error in solutions of (3) proved to be

below 0.5 percent in all the cases considered. The error of

the results obtained using (4) is less than 1 percent with

c/v > 2; also, the error is less than 1 percent using the

explicit formula (4b) as long as c/v >2.5. For c/o >3 the

error of the latter expression is less than 0.5 percent. It

might be noteworthy that the “two-dimensional” theory

developed is valid for real three-dimensional structures in

some domains of phase shifts. In the experimenting with a

prototype BWO whose interaction space is shown on Fig.

Al

3
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2 (i.e. d= 0.19 mm; 8 = 0.1 mm; and 6=0.527), oscillations

were excited at ~d > 7r/4. Fig. 3 presents a theoretical

wavelength–voltage dependence of the wave excited (solid

line) as given by (1) with the assumption that the wave

phase velocity and electron beam velocity coincide. The

circles represent experimental data. It should be observed

that the measured and the calculated values are in good

agreement.

VI. CONCLUSION

A simple closed form has been obtained for the disper-

sion relations in comb-type slow-wave structures. The

formulas are characterized by a high accuracy and include

many earlier results as particular cases, The results ob-

tained allow one to analyze the field near and beyond the

cutoff .

ACKNOWLEDGMENT

The author is indebted to Dr. B. P. Yefimov, B. Z. Ya.

Krivitski, and M. V. Miltcho for furnishing their experi-

mental data.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

REFERENCES

I. Sh. Beluga, “Calcntation of cavity-type slow-wavestructures by
the equivalent static methody Rariiofizika-Izo. uuzao, vol. 4, no. 3,

pp. 659–702, 1961.
—, “On the partial domain methods based on stationarity of

some fnnctionats,” Radio Eng. Electron. Phys., vol. 9, no. 3, 1964.
R. A. Silk and V. P. %zonov, SIOW- Wave Structures (in Russian).
Moscow, U.S.S.R.: Soviet Radio Publ. Co., 1966.
I. L. Verbitskii, “Diffraction of a plane wave on a dense comb:
Radio Eng. Electron. Phys., vol. 21, no. 3, pp. 41 –46, Mar. 1976.
L. A. Wainstein, Diffraction Theosy and the Factorization Method
(in Russian). Moscow, U. S.S.R.: Soviet Radio Publ. Co., 1966.
Tables of rhe Function 4(z)= (d/dz)ln r(z) and Its Deriuatioes in

the Complex Donsain. Moscow, U. S.S.R.: Computation Center,
Acad. Sci. U.S. S.R., 1965.
V. L Krayevski and V. I. Gayduk, “The effect of the slow-wave
structure geometry on the Coulomb forces in an electron stream,”
Izu. ouzoo-Radioelektron., vol. 16, no. 12, pp. 80–83, 1973.
I. L. Verbitskii, “A static Green function and the space charge in a

magnetron with thin lamellas,” Radio Eng. Electron. Phys., vol. 19,
no. 4, pp. 145– 146, Apr. 1974.
L. M. Boozick, “The stop-band dispersion and attenuation in
comb-type slow-wave structures,” Radiophys. Qaant. EIectron., vol.
11, no. 12, 1971.
R. A. Hurd, “The propagation of an electromagnetic wave along

an infinite corrugated surface; Can. J. Phys., vol. 32, no. 12, pp.
727-734, 1954.


