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be claimed for the form in (31), and that the purpose of
this section is to indicate the special nature of the difficul-
ties associated with the near-degenerate cases, and why
the attempted expansion runs into trouble.

X. CONCLUSIONS

With the publication of this paper (and also a forthcom-
ing paper dealing with propagation of the TM modes [3])
we can say that the problem of propagation in a twisted
rectangular guide is complete and well understood with

the exception that there is still work that needs to be done
to obtain a valid and useful expansion in the neighbor-
hood of, but not exactly at, a degeneracy.
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Dispersion Relations for Comb-Type
Slow-Wave Structures

I. L. VERBITSKII

Abstract—Asymptotically accurate dispersion relations for slow eigen-
waves of a dense comb placed on the wall of a parallel-plate waveguide are
given in closed form, The equations can be easily reselved numerically.

An analysis of dispersion relations for combs, based on the above-men-
tioned equations, has advantages over commonly used methods because of
the simplicity of the necessary calculations and clarity of results.

I. INTRODUCTION

ISPERSION relations for the widely used comb-

type slow-wave structures usually are obtained
through rather complicated computations [1], [2], [3}. In
this communication asymptotically accurate dispersion re-
lations for slow eigenwaves of a dense comb placed on the
wall of a parallel-plate waveguide are given in closed
form. The equations can be easily resolved numerically. If
the ratio of the light velocity ¢ to that of the slow wave v
is not too small (e.g., ¢/ v > 2.5), explicit formulas for the
wavelength as a function of the phase shift can be ob-
tained.

An analysis of dispersion relations for combs, based on
the above-mentioned equations, has advantages over com-
monly used methods because of the simplicity of the
necessary calculations and the clarity of results.
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II. BAsIC RELATIONS

Consider a comb placed on the wall of a parallel-plate
waveguide (Fig. 1), where d is the period, /2 the groove
depth, 8 the groove width, and A the spacing between tops
of the lamellas and the upper waveguide wall. We will also
use the following notation: A for the free-space wave-
length, w the circular frequency, k=27 /A=w/c the wave-
number, k=d/A=kd/2n, 6=48/d, v=«tankh,
B the phase constant of the slow wave, a=V/f 2—k? the
transverse wavenumber of the slow wave, b=pfd/27
(where Bd is the phase shift over one period), and a=
ad /2.

For the case of 4=00, open comb, the dispersion
equation for the TM slow wave (with nonzero compo-
nents £, E,, and H,) was obtained in [4, eq. (16)] with an
assumption that terms of the order exp(—2wh/8) and «?
could be neglected (indeed, these values are generally very
small in real slow-wave structures). Through some labori-
ous and sophisticated calculations the author has
succeeded in obtaining an explicit expression for the in-
tegral [4, eq. 1(b)] from (the derivation has been omitted
here). With the aid of this formula and an additional
assumption, i.e., exp(—2xd/d)<1 (which holds in most
cases), we can now obtain a closed form of the dispersion
equation for slow waves in a comb placed in a waveguide.

0018-9480/80,/0100-0048%00.75 ©1980 IEEE



VERBITSKII: DISPERSION RELATIONS FOR SLOW~WAVE STRUCTURES

INNNNNAN ‘t‘é\\\\\\\ ANN

X

This relation is

[ f—a+(a+b)exp(—2a4)]?
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At b~gq (i.e., c/v is large) equation (4) can be reduced to
a still simpler form; viz.,

1 1
== —a(b)—1(0). (42)
The general equation (1) with baza takes the form
1 1 —
;=Zcothb[A +u(8) |- @(b)—f(8) (1a)

where 4 =27A/d. It can be seen from (la) that u(#)
accounts for penetration of the quasi-static field into the
grooves, which effect is the same as though the boundary
y=0 were displaced to the position y = —(d/27)u(d). A
similar effect was described in papers [7] and [8] for a
purely static case.

With the same accuracy as used in deriving (la) and
(4a) we can write their approximate closed-form solutions,

1 1 2
5 =3 " v0)-f8)-5

where

P =[(1-0)""°(1+0)' "] *detexp(—25u(9)),

7(8)=21n(48) + 1—;9111(1—0)— L 0n(1-+0),

@(b)=y(1+b)+y(1-b)+2C,
¥(2)=T"(2)/T(z)

is the digamma function and C=0.5772--- is Euler’s
constant. Equation (1) has been derived by taking into
account the reflection from the upper wall of the wave-
guide only for the fundamental harmonic of the surface
field. Reflections of higher harmonics are negligible be-
cause of the imposed condition exp(—27nd /d)<1 (see [5,
ch. 51, p. 266]. ‘

Equation (1) can be easily resolved numerically. De-
tailed tables [6] and effective methods of calculation are
known for the one special function involved y(z). Using
the familiar expansions of y/(z) one can obtain the follow-
ing approximate expression for o(b):

)
The accuracy is of the order 10~ with |5 <0.5.
II1.

For particular cases (1) can be simplified. Thus, for
surface waves in an open comb (4 =00, exp(—2a4)=0)
equation (1) reduces to

1 1

PARTICULAR CASES

2(b—a)?
a—b)? +a+b]

with a>>«? (i.e., the ratio ¢ /v is not too small) the follow-
ing equation can be deduced from (3):

()

14 a

3)

Q)

[b—a—(a+b)exp(—2a4)]P —a—b—(b—a)exp(—2a4d) M
namely
.= (n+05)7
h_+0{%cothb[/?+p(0)]—(p(b)—f(H)}
n=0,1,2,--- (Ib)
and
e (n+0.5)7 ’ n=0,1,2,--- (4b)

i+ 0[—}; — g(b) —f(o)]

where h=2xh/d. Different values of n here correspond to
different passbands of the structure and (1b) and (4b) are
valid only for those n’s which provide for sufficiently large
values of the ratio c/v (i.e., axb, k< b?). Taking n=0
we obtain the necessary conditions of low-phase velocities
as

2
= d } <1
4bh + 8] coth b(A + ) — bep(b) — bf(8) |

for the comb in the waveguide and (28#/7)’<«1 for the
open comb.
Substituting b=1/2 in (4b) we find cutoff wavelengths

_ 2h+dg(8)/7
- n+05

With n=0 the cutoff depth of the fundamental band
becomes

A

A d
h=7—5-80)

where
g(8)=201n0—-(1—-0)In(1—0)+(1+8)In(1+8).
For vanishingly thin lamellas the earlier known results

follow immediately: sxtankh=1/2In2 [9], h=A/4-
(d/m)In2 [10].
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IV. WAVES IN THE STOPBAND

Representing (4a) in the form

%=—[¢(b)+¢(1—b)+f(0)]

we can identify real solutions » with b=i/2+ it, such that
g@0)>1/v>—o0 at 0<t>oo0. These solutions corre-
spond to surface waves in the stopband, traveling along
the structure with a frequency-independent phase shift
Bd=x and attenuation ¢. The corresponding wavelength
varies between

Ao 2h+dg(8)/

n+o0s =0
and
2h
}\_n+1’ at t=oco.

For 8= I such waves were described in [9].

In the vicinity of the point B=«, a=0 (where the
surface wave transforms to the bulk wave) the following
relations can be obtained from (1):

e nm
F—u(0)/0
or
A dub) _
hmny+ =g =L

V. EVALUATION OF ACCURACY

To evaluate numerical accuracy of the above results, a
comparison has been made with some known numerical
analyses [1]-[3]. The error in solutions of (3) proved to be
below 0.5 percent in all the cases considered. The error of
the results obtained using (4) is less than 1 percent with
¢/v>2; also, the error is less than 1 percent using the
explicit formula (4b) as long as ¢/v >2.5. For ¢/v >3 the
error of the latter expression is less than 0.5 percent. It
might be noteworthy that the “two-dimensional” theory
developed is valid for real three-dimensional structures in
some domains of phase shifts. In the experimenting with a
prototype BWO whose interaction space is shown on Fig.

18 i 1

U, <8
Fig. 3.

2 (i.e. d=0.19 mm; § =0.1 mm; and §=0.527), oscillations
were excited at Sd >w /4. Fig. 3 presents a theoretical
wavelength—-voltage dependence of the wave excited (solid
line) as given by (1) with the assumption that the wave
phase velocity and electron beam velocity coincide. The
circles represent experimental data. It should be observed
that the measured and the calculated values are in good
agreement.

VI. CoNCLUSION

A simple closed form has been obtained for the disper-
sion relations in comb-type slow-wave structures. The
formulas are characterized by a high accuracy and include
many earlier results as particular cases. The results ob-
tained allow one to analyze the field near and beyond the
cutoff.
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